Contents
Index
Clapeyron.EstimationClapeyron.EstimationDataClapeyron.ToEstimateClapeyron.objective_functionClapeyron.return_model
Estimation Tools
Clapeyron.ToEstimate — TypeToEstimate
ToEstimate(params_dict)Input parameters: A dictionary with the following potential entries
params: The name of the parameter being fitted (Symbol)indices: The index of the parameter being fitted (IntegerorTuple{Integer,Integer})factor: Factor to multiply parameter being fitted to have it in the correct units (Float64)symmetric: ForPairParam, if the parameter is symmetric or asymmetric (Bool)cross_assoc: ForAssocParam, if the parameter is for cross-association (Bool)recombine: ForPairParam, if the combining rules must be applied for unlike interactions (Bool)lower: Lower bound for the parameter (Float64)upper: Upper bound for the parameter (Float64)guess: Initial guess for the parameter (Float64)
Output:
A ToEstimate struct
Description
Turns the input parameter dictionary into a ToEstimate struct to be used within the parameter estimation.
Clapeyron.Estimation — TypeEstimation
Estimation(model::EoSModel,toestimate::Dict,filepaths;ignorefield = Vector{String},objective_form = mse(pred,exp) = ((pred-exp)/exp)^2)Input parameters:
model: The initial model containing the species we wish to parameterisetoestimate: The dictionary of parameters being fittedfilepathsorfilepaths_weights: The location of the data files used to fit. Can also contain the weights of each datasetignorefield: Specify which EoSModel fields to ignore in the main modelobjective_form: Specify the functional form of the objective function in the formobjective_form(pred,exp)
Output:
Estimator object which contains the following:
model: The model whose parameters will be variedinitial_model: The initial model before parameterisationtoestimate: ToEstimate struct which contains all the information on the parametersdata: Vector ofEstimationDatastructs where all the information on the data is storedignorefield: Vector of fields to ignore in the parameter estimationobjective_form: Function to evaluate the error measure for the objective function
The following objects are also output:
objective: The objective function which is used to fit the parametersx0: Initial guesses for the parametersupper: Upper bounds for the parameterslower: Lower bounds for the parameters
Description
Produces the estimator and other useful objects used within parameter estimation
Clapeyron.EstimationData — TypeEstimationData
EstimationData(filepaths)Input parameters:
filepathsorfilepaths_weights: The filepath of the data used in parameter estimation. Optionally, a tuple containing the weights of each dataset.
Output:
An EstimationData struct with the following fields:
method: The property estimation method which is used to obtain predictions for a given inputinputs_name: The variable names for the inputsoutputs_name: The variable names for the outputsinputs: Vector for each inputoutputs: Vector for each outputweights: The weight for this particular dataset
Description
For a given input data set, produce an EstimationData struct.
Clapeyron.return_model — Functionreturn_model
return_model(estimation,model,params)Input parameters:
estimation: The estimator objectmodel: The model whose parameters we are varyingparams: The new parameters which we want to change
Output:
model: The new model with the updated parameters
Description
Based on the parameters provided and the estimator, a new model is produced from the input.
Clapeyron.objective_function — Functionobjective_function
objective_function(estimation,params)Input parameters:
estimation: The estimator objectparams: The new parameters which we want to evaluate the objective function for
Output: The relate root mean square error given the data and parameters provided
Description
The objective function used within parameter estimation.