Contents
Index
Clapeyron.Estimation
Clapeyron.EstimationData
Clapeyron.ToEstimate
Clapeyron.objective_function
Clapeyron.return_model
Estimation Tools
Clapeyron.ToEstimate
— TypeToEstimate
ToEstimate(params_dict)
Input parameters: A dictionary with the following potential entries
params
: The name of the parameter being fitted (Symbol
)indices
: The index of the parameter being fitted (Integer
orTuple{Integer,Integer}
)factor
: Factor to multiply parameter being fitted to have it in the correct units (Float64
)symmetric
: ForPairParam
, if the parameter is symmetric or asymmetric (Bool
)cross_assoc
: ForAssocParam
, if the parameter is for cross-association (Bool
)recombine
: ForPairParam
, if the combining rules must be applied for unlike interactions (Bool
)lower
: Lower bound for the parameter (Float64
)upper
: Upper bound for the parameter (Float64
)guess
: Initial guess for the parameter (Float64
)
Output:
A ToEstimate
struct
Description
Turns the input parameter dictionary into a ToEstimate
struct to be used within the parameter estimation.
Clapeyron.Estimation
— TypeEstimation
Estimation(model,toestimate,filepaths,ignorefield,objective_form)
Input parameters:
model
: The initial model containing the species we wish to parameterisetoestimate
: The dictionary of parameters being fittedfilepaths
orfilepaths_weights
: The location of the data files used to fit. Can also contain the weights of each datasetignorefield
: Specify which EoSModel fields to ignore in the main modelobjective_form
: Specify the functional form of the objective function in the formobjective_form(pred,exp)
Output:
Estimator object which contains the following:
model
: The model whose parameters will be variedinitial_model
: The initial model before parameterisationtoestimate
: ToEstimate struct which contains all the information on the parametersdata
: Vector ofEstimationData
structs where all the information on the data is storedignorefield
: Vector of fields to ignore in the parameter estimationobjective_form
: Function to evaluate the error measure for the objective function
The following objects are also output:
objective
: The objective function which is used to fit the parametersx0
: Initial guesses for the parametersupper
: Upper bounds for the parameterslower
: Lower bounds for the parameters
Description
Produces the estimator and other useful objects used within parameter estimation
Clapeyron.EstimationData
— TypeEstimationData
EstimationData(filepaths)
Input parameters:
filepaths
orfilepaths_weights
: The filepath of the data used in parameter estimation. Optionally, a tuple containing the weights of each dataset.
Output:
An EstimationData
struct with the following fields:
method
: The property estimation method which is used to obtain predictions for a given inputinputs_name
: The variable names for the inputsoutputs_name
: The variable names for the outputsinputs
: Vector for each inputoutputs
: Vector for each outputweights
: The weight for this particular dataset
Description
For a given input data set, produce an EstimationData
struct.
Clapeyron.return_model
— Functionreturn_model
return_model(estimation,model,params)
Input parameters:
estimation
: The estimator objectmodel
: The model whose parameters we are varyingparams
: The new parameters which we want to change
Output:
model
: The new model with the updated parameters
Description
Based on the parameters provided and the estimator, a new model is produced from the input.
Clapeyron.objective_function
— Functionobjective_function
objective_function(estimation,params)
Input parameters:
estimation
: The estimator objectparams
: The new parameters which we want to evaluate the objective function for
Output: The relate root mean square error given the data and parameters provided
Description
The objective function used within parameter estimation.